I spotted this great project this week on LinkedIn and thought it worth sharing. The transformation of urban highways to waterways is an interesting subset of hidden hydrology worth exploring, with some great global examples we will discuss more in the future. This project traces the history of the Catharijnesingel, a canal removed to create an urban highway in Utrecht in the Netherlands, and more recently transformed from hardscape back to its original form as a canal. This provides a great case study on the benefits of public spaces around water, and the ability to restore lost public and ecological benefits through the restoration of waterways.

An overview can be found on the European Prize for Urban Public Space competition site, (Public Space) which recognizes “…all kinds of works to create, recover and improve public spaces in European cities.” The Catharijnesingel project was the winner of the competition in 2022.

For some background, the original Catharijnesingel was a canal that flowed around the defensive walls of the historic city. A park was originally built in the canal zone in the 19th century but was drained and paved over in the late 1960s to 1970s to create space for a major arterial roadway.

Work on the Catharijnesingel before burial (Public Space)

The before picture shows the Catharijnebaan, the roadway built atop the original canal. In 2002, citizens began to discuss the removal of the roadway and restoration of the canal to its original form.

Photo of the Catharijnebaan, the urban highway removed for restoration of the original canal (Public Space)
Image showing the Catharijnesingel after restoration (© 2021 OKRA/Public Space)

The transformation shows the restoration of the canal and revegetation of the banks. The description provides the context of reconnecting with public spaces in urban environments, and the ability to create new, safe, places to access nature and socialize. As noted in the project assessment, on the Public Space website:

“The Catharijnesingel adapts to this new situation by providing pedestrian paths and boat routes and enough space for outdoor recreation. The emphasis on the different microbiotopes of the green areas also makes a positive educational contribution to outdoor activities, where the changing face of nature can be contemplated while walking (or sailing) on the Catharijnesingel.”

The transformation provides access to the waterway for boating, paddleboarding, shady spots, and water access points along the banks, providing much-needed recreation spaces. The project was built in two phases, over 2015 and 2020 with a total restoration area spanning 1.1 kilometers of length.

Photos showing areas of seating adjacent to the restored canal (© 2021 OKRA/Public Space)

There’s also a great video on the Public Space website with some additional historical background and imagery. The project designer, Utrecht-based OKRA Landschapsarchitecten refers to the higher goal of the project as a “…climate-adaptive backbone for the centre of Utrecht,“ and elaborates on the project goals and results:

“In the 20th century Catharijnesingel became Catharijnebaan: an unattractive urban highway dominated by asphalt and concrete. When offered the chance to revert that development, we took the opportunity to push the idea further to its full potential. As the water returned to the historic Canal area, it brought along a new natural park route right into one of the busiest areas in the Netherlands. The result was an urban landscape that was fully connected to the past, the present and the future.”

Aerial View of the restored canal (© 2022 Stijn_Poelstra/Public Space)

These transformations provide a great example of the power to right some of the previous wrongs in urban areas, creating adaptable, climate-friendly spaces. While the canal was never a natural waterway, the project shows that restoring artificial waterways can provide myriad benefits similar to creeks and urban rivers, providing important hydrologic, climate, and public space goals.

Thanks for reading Hidden Hydrology! Subscribe for free to receive new posts and support my work.

Note: This post was originally posted on Substack on 05/29/24 and added to the Hidden Hydrology website on 04/23/25.

Throughout history, there are numerous theories about building the Great Pyramids of Giza along the Nile River in Egypt. One of the key questions has been the logistics of moving the massive stones, each weighing over two tons. 2.3 million of these blocks of limestone and granite were used to construct the structures, without the aid of modern machinery. Theories for how this was accomplished vary and include methods of transport over land via sleds and rollers, and construction on-site using ramps, and pulleys. Some even attribute these other-worldly feats more broadly to the work of aliens.

Water and the Nile have always been tied to these theories, with the idea that the blocks were floated on the river from distant quarries for use on-site for the Pyramid construction. The structures sit at a slightly higher elevation from the floodplain, some distance from the main channels of the Nile, thus there have been questions on how the stones were transported this last mile from the river to the site itself. The research questions used the tools of hidden hydrology to develop theories on lost channels instrumental to the construction. Two such theories are discussed below.

Khufu Branch

Research on a proposed lost side branch of the Nile being used for aiding in construction was discussed in 2022. I read about it in the article “A Long-Lost Branch of the Nile Helped in Building Egypt’s Pyramids.” (NY Times, 08.30.22), which discusses research results from the paper: “Nile waterscapes facilitated the construction of the Giza pyramids during the 3rd millennium BCE” (PNAS, 08.29.22). The article posits the use of a now-defunct Khufu branch of the Nile River that bent towards the assemblage in Giza to aid in transporting the giant slabs of stone to the building zone.

Conceptual diagram of Khufu Branch, with location of sediment cores (PNAS)

The researcher’s process involved looking at soil cores: “Seeking evidence of an ancient water route, the researchers drilled down into the desert near the Giza harbor site and along the Khufu Branch’s hypothesized route., where they collected five sediment cores.” Analysis of the samples included paleobotany to look at plant fragments and pollen, and matching these species with the presence or absence of water-adapted or dry plantings to determine if the areas were part of a historical water body. The results showed periods of inundation that matched the construction of the pyramids.

This wet period allowed standing water to persist, and the proximity of the Khufu branch provided the ability to extend the reach of the Nile, allowing the construction of smaller canals close to the area of the Giza plateau. The branch is theorized to have dried up around 600 B.C. and the channel moved further away from the site of the Great Pyramids.

Rendering of the Khufu Branch of the Nile (Alex Boersma/Proceedings of the National Academy of Sciences/NY Times)

Ahramat Branch

Several current articles (Cosmos, BBC) have reignited this dialog around these theories of the use of waterways for transporting building stones. They all refer to research from a May 2024 paper entitled, “The Egyptian pyramid chain was built along the now abandoned Ahramat Nile Branch.” (Nature Communications Earth & Environment, 05.16.24). The research team offers new theories about investigating the hidden hydrology to unlock these ancient mysteries. As noted in the article the team makes a similar assertion to the previous work on the Khufu Branch, however, they consider the hydrology differently as a parallel side channel they refer to as the Ahramat Branch. From their abstract:

“Many of the pyramids, dating to the Old and Middle Kingdoms, have causeways that lead to the branch and terminate with Valley Temples which may have acted as river harbors along it in the past. We suggest that The Ahramat Branch played a role in the monuments’ construction and that it was simultaneously active and used as a transportation waterway for workmen and building materials to the pyramids’ sites.”

The map below shows the route of the Ahrama Branch, which was situated on the western edge of the floodplain closer to the location of the Pyramids. In this case, the proximity extended the length of the Pyramid complex, including those to the south near Memphis. The study offers the opportunity for new information, protection of cultural sites, and outline areas to protect from urban development.

The ancient Ahramat Branch. (Eman Ghoneim et al./The Conversation)

The research team discusses the project directly in an article: “We mapped a lost branch of the Nile River – which may be the key to a longstanding mystery of the pyramids.” (The Conversation, 05.16.24). They discuss the methodology of using satellite images, digital elevation models, historical maps, and other sources to identify the traces of the waterway. As they note, there are ‘causeways’ that look to connect at the points of the major construction areas, which were used as “docks” for loading and unloading materials and for workers moving up and down the river.

The idea of understanding the historical hydrological elements of the river provides a unique approach, noted by the team:

“This research shows that a multidisciplinary approach to river science is needed to gain a better understanding of dynamic river landscapes. If we want to understand and protect the rivers we have today – and the environmentally and culturally significant sites to which they are inextricably tied – we need a greater appreciation of the interconnected factors that affect rivers and how they can be managed.”

3D view of the former Ahramat Branch in the Nile floodplain adjacent to the Great Pyramids of Giza. (Nature)

Similar to the Khufu branch, there are theories about what eventually happened to the Ahramat Branch. These include the gradual migration of the channel, tectonic shifts that changed the floodplain drainage, or accumulation of sand filling up the channel, concurrent with other desertification processes at work. The climatic shifts could also have led to more arid conditions and dissipation of the side channel due to lower flows.

Check out the articles and papers for much more detail. I appreciate these larger-scale investigations of hidden hydrology, especially when they intersect with the complexity of ancient constructions, providing hints of how water was instrumental in these monumental endeavors. It shifts the attention away from the typical urban focus of hidden hydrology, which concentrates on the burial and piping of streams in cities, positioning the investigations of hydrology through bigger contexts and longer timescales. And, it’s a pretty cool way to solve a mystery.

Thanks for reading Hidden Hydrology! Subscribe for free to receive new posts and support my work.

Note: This post was originally posted on Substack on 05/21/24 and added to the Hidden Hydrology website on 04/23/25.

Milan once boasted a robust system of canals, similar to the well-known waterscapes of Venice. Lacking a large river in the urban area, the canals in Milan were developed in the 12th to the 17th centuries to provide water access and connections that were not part of the original city. The area in the southwest quarter of the city is known as the Navigli district, and today “…remains one of the last true connections the Milanese have with water. The Grand Canal (Naviglio Grande) itself dates back to 1177, making it one of the oldest navigable canals in Europe. Today, it’s packed with bars, cafes, restaurants, art galleries and boutiques; in non-lockdown times, it’s a lively meeting spot or a place for a gentle passeggiata stroll by the water.”

Much of the canal system was buried as part of the modernization of the city, but the system still exists, a few areas see daylight, but most are now underground in pipes. A recent paper by Carlien Donkor, Agenee Bavuso Marone, and Allegra Aprea, “Unveiling Milan’s Navigli and Underground Water Heritage through Integrated Urban (Water) Design.” (Blue Papers, 2024, Vol. 3, No. 1) discusses the Navigli through the lenses of climate adaptation, and water resource management, with a goal to “reclaim Milan’s identity as a “city of water” through a deliberate design methodology informed by the city’s history.”

“Snowfall in the Navigli, Milan” January 1852 (Image source: Angelo Inganni / Blue Papers)

The authors provide additional context for the historical canal and lock system, urban water power dynamics, and how these features had served functional purposes in the original historic city, like draining the marshy landscape mitigating flooding. They also discuss how these can restore the ‘water heritage’, and ways these systems can aid in addressing the contemporary urban issues facing Milan. The system map of Milan provides a hint at some of the main components. Some background, from the authors:

“The Navigli were dug as early as 1179 for defensive purposes, as private irrigation channels, and later as lines of trade and business, and became a part of everyday Milanese life (Aprea et al. 2018). In the past, these artificial rivers were the only source of running water for domestic use; for instance there were many old washing houses along the Navigli like the one in Vicolo dei Lavandai (Ministry of Tourism n.d.). They were even used to transport materials to the Duomo (Milan’s main cathedral) during construction (Tyson 2021; Global Site Plans n.d.). The Navigli system reached its peak during the Renaissance, when Leonardo da Vinci worked on the improvement and expansion of the canals (Tramonti 2014).”

The water system of Milan (Stanqiweb/Blue Papers)
Historical image of canals in Milan (Civico Archivio Fotografico/BBC)

The canals were filled early in the 20th century, many turned into roadways as cars and trains replaced boats for transportation. Like many other cities, the authors note: “…the canals were perceived as sources of disease and odor, and as health and hygiene needs of the growing city became alarming the initiative to conceal them were desirable.”

Incoronata Lock is a remnant of the canal system still visible (Joey Tyson/BBC)

The current system that is the result of this transformation has disconnected residents from the water, changing the nature of the city and diminishing the historical role the Navigli. There have been proposals for reopening the canals and daylighting some of the buried waterways, which are ongoing, however, the authors expand the notion to include a broader spectrum of opportunities to tap the historical legacy of the “city of water” as part of a modern water system. As noted: “By looking into the past and present water infrastructure, surface and underground, technological solutions for collecting, absorbing, filtering and purifying rainwater, formed part of this landscape project.”

This system diagram in the article takes some unpacking, but shows a master plan diagram “showing the hydraulic continuity of the project to the Fossa Interna as well as the three Navigli.” This included incorporating green infrastructure solutions (or in the parlance of some European areas “sustainable drainage systems” or SUDS), which have multiple benefits like restoration of biodiversity, reduced urban temperatures, and amenities.

Waterland master plan (Carlien Donkor, Agnese Bavuso Marone and Allegra Aprea, 2018/Blue Papers).

The ability to use “historical analysis” as a way to create frameworks for modern water systems is highly aligned with the goals of this hidden hydrology project and the authors expand the notion beyond the technical to include the importance of culture in the water solutions.

“For older Milanese, water in Milan evokes a deep nostalgia for the disappeared aquatic city symbolized by the countless depictions in art of the Navigli. The Navigli brought water to the people and people to the water. In the same way, Waterland would do the same. While the call to reopen the canals is good, it should be noted that their water management function is for a different scale of city; this should be translated in a contemporary intervention.”

There is more in the article and references, so would appreciate hearing other’s reactions to the paper’s findings, and perhaps if applicable to other regions. Also mentioned earlier, some of the work is underway to daylight canals in Milan. Notably, a project called Riaprire I Navigli (Reopen the Canals) has a wealth of information on specific worth being done. It is worth a follow-up post for more info (and a good chance to work on my Italian), so stay tuned.

Thanks for reading Hidden Hydrology! Subscribe for free to receive new posts and support my work.

Note: This post was originally posted on Substack on 05/13/24 and added to the Hidden Hydrology website on 04/23/25.

I’ve written pretty extensively here about London’s Lost Rivers, however this recent article in the Telegraph “The forgotten Fleet – London’s lost river as it used to look” offers some really awesome historical imagery worth sharing. (all images via the article, which also have extensive captions).

Artistic depiction of the Thames in 30BC – the Fleet is the bottom right
Londinium, the walled Roman City, with a Roman ship docking at the entry to the Fleet
Painting of Hampstead Heath – the headwaters of the Fleet
Fleet flowing through Kentish Town

The legacy of hidden rivers lives on in names, as mentioned in the image caption:

“The river may have disappeared from view but evidence for its existence remains in the modern place names. Kentish Town is probably derived from Ken-ditch, meaning “bed of a waterway”, and for centuries it was a pleasant riverside village known for its clean air. Spring Walk, Anglers Lane, Brookfield Park and, further downriver, Turnmill Lane, sit on the path of the Fleet.”

The location near Bagnigge Wells – which was also a great Spa destination
Battle Bridge (now Kings Cross) in 1810, per the caption: “referred to an ancient bridge over the Fleet where Boudica’s army is said to have fought the Romans.”
Confluence of the Thames at the Fleet in the 17th Century

The caption to the above image alludes to the eventual demise of these rivers through constant fouling due to rapid development, “As London grew, the river became increasingly a sewer, filled with ‘the sweepings from butchers’ stalls, dung, guts and blood,” according to Jonathan Swift.” Adding to this, a passage from Alexander Pope:

“To where Fleet-ditch with disemboguing streams / Rolls the large tribute of dead dogs to Thames / The king of dykes! than whom no sluice of mud / with deeper sable blots of silver flood.”

The development beginning to cover the “Fleet Ditch” in 1812, covered by the mid 19th Century.

Great to see the evolution of one stream – and London, perhaps more than any city, seems to have extensive documentation that tells these visual stories with a richness that adds to the maps and words. Plenty more images on the original article, and load more history of the Fleet and it’s adjacent developments in the captions, as well as this previous article by Tom Bolton from last year.


HEADER: Fleet Market, between Holborn and Ludgate Circus, 1736 – image via Telegraph

An interesting case study in hidden hydrology from a region I’ve yet to discuss, Greece. Via the Telegraph, an article “Athens hatches ambitious plan to uncover fabled river, once the haunt of Socrates, and turn it into a park.” The river in question is the Ilissos, which, due to lack of maintenance on the subsurface tunnel in which the river flows has led to structural issues that has caused issues with the tram line running on the surface, and opened up opportunities for restoration of this ancient waterway. As mentioned:

“An 1821 water colour of the Ilissos River and the Temple of Olympian Zeus” – via Telegraph (image credit Alamy)

“Urban planners have suggested that rather than spending millions of euros on reinforcing the tunnel and repairing the track, the tram line should be diverted along a different route and the river opened up. They are proposing the creation of a park along a one mile stretch of the formerly forgotten river.”

Some context on the significance of this river, via the HYDRIA Project, “Ilissos river was considered in antiquity as the second main river of Athens, forming an horizontal landmark in its southern and eastern sides. Ancient writers mention various activities by its banks, varying from civic processes, cults -including a sanctuary dedicated to the river himself, by Ardittos hill- or social walks and philosophical endeavours in idyllic landscapes, as for Socrates and his disciples (Plato, Phaedrus 229-230, link). “

View of Athens from the River Ilissos – painting by Johann Michael Wittmer – via Greek City Times

Due to the dry climate, the Ilissos and the other river in Athens, the Kifissos, are often dry, as mentioned in the article. “Given Greece’s dry, hot climate, neither is huge – they are nothing like the Thames in London or the Tiber in Rome.” They do, however, act as places for floodwaters to run after winter rains, and the depths can reach up to six feet.

Map of Ancient Athens (Ilissos River highlighted by author) – via Ancient History Encyclopedia

From the BBC “Athens to open up ancient river“, the plan by Nikos Belavilas from the Urban Environment Lab shows the route of the proposed daylighting, restoring it after it was paved over in post-WWII development. You can see the location of the current configuration in the context of the historical routing above, including the Stadium and the Temple of Olympian Zeus, built by Hadrian.

Map of the Ilisos – via BBC (image via Urban Environment Lab)

Beyond daylighting, the restoration also has bigger implications, as a strategy to avoid future issues. As mentioned in the BBC article:

“But it is not just a simple matter of reclaiming the city’s past, but also of saving its present.”If the Ilisos tunnel collapses, it will block the natural course of the river, and could flood the entire city centre,” Mr Belavilas warns – “That doesn’t bear thinking about.”

Currently, only a small section is now visible on its path from the mountains, as mentioned in the Telegraph: “It originates in the mountains on the edge of the city and eventually flows into the Saronic Gulf, after passing almost unseen beneath the streets of the capital. It does emerge briefly, in reed beds behind the Temple of Olympian Zeus, which was built over several centuries starting in the second century BC. “

The only uncanalised part of the bed of Ilissos river that once ran outside the old city of Athens. – via Wikipedia

HEADER: River Ilisos and Stadion Bridge, ca. 1900 – via Wikipedia

A favorite precedent of mapping around water was the DC Water Atlas by John Davis, which explored historical waterways and some of the hidden layers of the hydrology of Washington D.C. in an interactive way.  A recent mapping effort, The D.C. Underground Atlas by Elliot Carter takes a slightly different stance and approach, both in content and delivery, augmenting this previous effort and expanding the breadth and the way it is communicated via a series of interactive Story Maps.  The thrill of peeling away perceptual layers of history and infrastructure interests many, which is reinforced from Carter’s introductory text:

“Washington sits atop an interconnected layer cake of transportation, utility, and pedestrian tunnels extending three dimensionally beneath city streets.  Given their importance to daily life in the nation’s capital, it’s surprising to find that the full picture of Washington’s various tunnels remains unpainted. This project aims to complete that picture.”

While the previous effort by Davis was focused specifically on water, the new effort focuses on ‘tunnels’, in the sense that they are accessible.  As mentioned by Carter “In order to limit the scope of the project, “tunnels” are defined as fully walkable passageways – no sewer pipes, culverts, or crawlspaces. All the tunnels depicted can accommodate standing adults, assuming that they have proper access credentials.”  What are included are maps of multiple transportation modes, water, steam and sewer infrastructure, as well as pedestrian tunnels and the specialize subterranean elements supporting the Capitol Mall.

With a short intro page, the interface gives you the option of Maps or Text, each taking your through a narrative with images, text, and maps that shift and zoom and layer additional information to tell a story of each of the particular types of tunnels.  For instance, the Sewer story starts with historical mapping with some information on the early sewage system, and then moves along a timeline, showing early infrastructure and how it evolves into more contemporary systems.

The sequence expands to show, with historical imagery, such as this showing the building of the combined sewer system in 1882 along with the major lines that were built at that time, and more recently a larger scale modern tunneling for new treatment facilities.

Obviously the focus on tunnels gives it a specific scale, and it’s not necessarily capturing the total water story, but showing the amount of subsurface infrastructure that exists, under our feet. The Aqueduct mapping leads more through the path of movement of water from source, with stops at major point, showing how you can adapt the Story Map to fit the particular type of infrastructure, in this case following a path.

For selected categories, the essays are more expansive, such as the breakdown of Aqueduct Tunnels, which expands the spatial narrative with some more rich history.  One of those points is the use, like many other cities, of wooden water pipes, in this case one from around 1810.

A wooden water pipe from Pennsylvania Avenue, installed circa 1810. Photo: Army Corps of Engineers/Public Domain

Another is the great historical images of the brick aqueducts, such as these 9 foot diameter pipes leading to the Dalecarlia Reservoir.

Photograph in Peale album, Washington Aqueduct. PG.66.25.41.

And more diagrams showing cool images of some of the documents, in this case coded to show the type and material of tunnels and their depths as the Tunnel traversed the landscape.  (click to enlarge)

Cross-section of the Lydecker Tunnel topography. The tunnel was advanced via vertical drop shafts at Foundry Branch, Rock Creek Park, Champlain Avenue, and McMillan Reservoir. Illustration: Washington Aqueduct/Public Domain

The story has multiple parts, remnants of abandoned infrastructure as well has a unique quality, such as the Sand Filters near the McMillan reservoir, in which “The underground vaults created their own weather systems when the sand filters were still in use, with internal clouds and condensation”

Photo: NPS/Public Domain

Lots more to explore here for sure, and if your thing is other, non water- types of infrastructure, this has lots and lots of layers.  While the DC Water Atlas, as I pointed out had an exploratory, video-game like quality, this D.C. Underground Atlas has more of a linear spatial narrative that is more direct.  Both have merits in making something that may be less compelling in an essay more engaging an accessible in map format.  As a form of storytelling it’s great, and perhaps the best story comes in the form of daring subsurface navigation, mentioned in the article in CityLab,

“…Carter says the “single most epic Washington tunnel story” might be the adventures of Don Bloch, a Washington Star reporter who wrote for the paper for about a year. In 1934, Bloch convinced the inspector of maintenance at the pumping station to let him cross the city through its sewers for a Sunday feature. Equipped with a flashlight, rubber boots, and a gasmask, he hopped down manholes from street to street, with “cloud watchers” who would warn him if a storm might pose a risk from rising waters. Bloch’s tour guide shoved him in a trunk lid for a ride on the waters leading into Rock Creek. Carter says it might be the “best thing in stunt tunnel journalism Washington has ever produced,” but Bloch’s story remains sort of an enigma to Carter. One of the few details he has been able to verify about him: He co-founded the Speleological Society of the District of Columbia in 1939. No mystery there, it’s not much of a leap from tunnels to caves.”


HEADER: Historical Sanitary System – via D.C. Underground Atlas (www.washingtontunnels.com); this and all images in this post via the site

A simple yet evocative project, Below the Surface is a catalog of objects found when a canal was drained in Amsterdam, creating a longitudinal timeline spanning from modern day to prehistory.  From the site:  “Urban histories can be told in a thousand ways. The archaeological research project of the North/South metro line lends the River Amstel a voice in the historical portrayal of Amsterdam. The Amstel was once the vital artery, the central axis, of the city. Along the banks of the Amstel, at its mouth in the IJ, a small trading port originated about 800 years ago. At Damrak and Rokin in the city centre, archaeologists had a chance to physically access the riverbed, thanks to the excavations for the massive infrastructure project of the North/South metro line between 2003 and 2012.”

The immensity of artifacts found in this hidden hydrology is amazing, and offer a rare chance to look below the surface (as opposed to underwater explorations, which has a range of limitations).  As mentioned:

“Rivers in cities are unlikely archaeological sites. It is not often that a riverbed, let alone one in the middle of a city, is pumped dry and can be systematically examined. The excavations in the Amstel yielded a deluge of finds, some 700,000 in all: a vast array of objects, some broken, some whole, all jumbled together.

The historical context spans a modern timeline going back many centuries, and the evolution of the site were important and provide context for what was found.  For the Rokin site, seen below, the area: “…served as an inland harbour for boats transporting goods and people from the hinterland. Both banks were densely developed with housing, workshops, shops and institutions, among which the Nieuwezijds Chapel (1347). The local urban fabric was constantly changing as major spatial interventions were implemented.”  

The site gives a detailed overview of the project and the archaeological challenges and opportunities, which include two sites, the Rokin and the Amstel. “For purposes of research, there were two intertwining strands: the city and the landscape. These revolved around the origin and history of Amsterdam. Finds from the river, consisting of (the remains of) ceramic, bone or metal man-made objects (artefacts), afford an insight into the material culture of the city. Ultimately, archaeological remains reflect the everyday activities of humans, in this case, of the inhabitants of Amsterdam and its visitors. As such, they are invaluable in the reconstruction of the historical picture of Amsterdam. The value of material remains as sources of urban history lies largely in their connection with the topographical structure of the city. Hence, the vital importance of the link between the deposits and their spatial origin in urban archaeology.”

The concept of streambed archaeology is well documented also, including the process of retrieval is aided somewhat by their submersion, as mentioned: “Another factor that makes streambed sites unique is their tendency to remain intact on account of the inaccessibility of the sunken objects. Once they had fallen in the water it was not easy to get them out. “  There are specific water focused objects, as well as giving clues to what was adjacent to the waterways: “Quite apart from the physical aspect of archaeological material sinking down in water, underwater depositions differ from deposits on land in the diverse origin and generally mixed nature of the finds. They are primarily associated with shipping activities and vary from items that have fallen overboard to complete shipwrecks and parts of ships. Archaeological remains can also be connected with activities ashore. As such, they can often be linked to objects associated with a building or structure, workshop or installation along the bank.”

The visuals of what has been found is provided in a grid, following chronological order, in order to sort from modern to ancient.  The recognizable debris from the modern era, such as credit cards in the 2000s, jewelry and china from the 1650s, pottery from the 1450s, and even fossiles and shells from early prehistory (listed as -119000).  A temporal snapshot of evolution, and an indication that, among their many urban uses, urban water bodies are a repository for our shared archaeological history.

xxx

 

Beyond this, each individual object is cataloged individually, such as this pocket knife.

There’s also a print version, called Stuff, which is available:

The cultural relevance of this detailed exploration hints at an expansive role of waterways in the urban context as containers for memories and, perhaps a time capsule for objects that can trace our lineage over millennia.


HEADER:   Excavation site at Ferdinand Bolstraat station, the cross-section shows the top of the Pleistocene (10,000 B.C.)