Our understanding on the arc of history around hidden hydrology is informed with maps and accounts from early explorers and settlers to areas, augmented with records, diaries, and oral histories. Often this neglects and misses the valuable stories of indigenous inhabitants of areas, and leaves us with a significantly shorter timelines for reference. The role of archaeology is vital to unlocking the layers of hidden hydrology that don’t emerge from these illustrative written histories, so I was really intrigued with a recent tweet from the Museum of London Archaology (MOLA) (Twitter: @MOLArchaology) that told of their current work, called London’s lost river: the Tyburn.  From their site, the project is the result of “…a team of expert geoarchaeologists  whose work is helping us to understand London’s lost rivers. As an educational charity, we want to share what we’ve learnt, so please join us to explore the story of this long-lost river.”   

Using the interactive ESRI Story Map, MOLA developed a narrative to describe the process and some of the key findings.  Much of the work is conducted along with construction sites, which gives an opportunity to look below the surface while excavation is happening.  The River Tyburn flowed on the north bank of the Thames, and most famously, was routed and defined the space called Thorney that Westminster Abbey was located, seen in this view circa 1530.

The origins of the river are tied to the longer history of the Thames, which is illustrated (see header image) and reaches back to the last glacial period of 11,500 years ago.  From there in, “…this new epoch, known as the Holocene, the Thames began to take the shape we know today, but many channels still criss-crossed the river’s floodplain within the wide gravelly valley. One of  these channels was the Tyburn, which flowed into the Thames.”   In this zone, there are hundreds of sites, or ‘deposit logs’ that are recorded, and these are modelled to create a snapshot, particularly focusing on the depths of land (depicted below as green – high ground and purple – low ground.  From this model, “projected possible courses for the River Tyburn, following the lowest-lying areas of the modelled 11,500-year-old topography.” with a caveat that “the river would have migrated over time.”

Drilling down (literally) into the specificity of the deposits shows the ranges of material and how it can inform, looking at “ancient flora and fauna” and focusing on things like Diatoms, Pollen, and fossils of things like “Ostracods, the remains of small crustaceans, can indicate salinity, water depth, temperature, water acidity/alkalinity”.

Below is “…a cross section, or transect, running north–south from Westminster to Vauxhall Bridge, along the north bank of the Thames. This connects deposit sequences recorded in trenches and boreholes, and helps us look at these sequences over wide areas.”

They also connect their study with the work of Barton and Myers 2016 book ‘The Lost Rivers of London‘ (see here for a post on the same), which speculated on a number of scenarios for the Tyburn, and various routes.  There’s some graphic things I’d change here (namely it’s hard to read the Barton and Myers layers) but the concept is interesting, to overlay varying studies and ‘proof’ the concepts of routing. In essence, does the data reflect the speculation on routes, either reinforcing or disputing what was speculated?  The below map is a composite of this

There’s links to some coverage in London Archaeologist, such as a 2014 article in which “… Tatton-Brown and Donovan used historic documents and maps to suggest that the medieval waterways separating Thorney Island from Westminster were man-made and that the Vauxhall Bridge route was the original and only course of the river.”  The 3D views of the route and the illustration of the provide a speculative view of the area.  From the site:  “Our topographic model supports Barton and Myers’s suggestion that discussing two distinct branches (towards Westminster and towards Vauxhall Bridge) is an over-simplification of what was probably a more complex delta-like network, as shown [below] (artist Faith Vardy).  This geoarchaeological study provides a baseline for reconstructing the evolving landscape; when combined with historical records and archaeology, even more detailed models could be created. The research done by others, such as Tatton-Brown, which focuses on later periods, may be supported by geoarchaeological work undertaken in the future.”

The concept of geoarchaeology is pretty fascinating as well, and worthy of some further exploration.  In the interim, you can check out the MOLA site for what their team does, which focuses on using “…auger or borehole surveys and interpret the archaeological soils and sediments retrieved, allowing us to reconstruct past landscapes and environments.”  The reason for this particular subset is to pick up “…where the archaeology is too deeply buried for traditional excavation techniques to succeed. It is also a cost-effective archaeological evaluation tool and geoarchaeological deposit modelling, which maps buried landscapes and deposits.”  This is relevant as the surface remnants of these, but the underground deposits, so they work in a “…wide range of depositional environments, including alluvial floodplains, fluvial environments and estuarine/intertidal zones. Using palaeo-environmental proxy indicators, such as pollen and diatoms, we reconstruct past environments. Our specialists also use a range of sedimentological techniques.”

These techniques don’t answer every questions, but coupled with expertise and interdisciplinary research, enables us to see further, and deeper than previousl.  The role of archaeology and geoarchaeology in hidden hydrology is vital, as shown above. While we often rely on maps, photos, sketches, and written histories to reconstruct places,


HEADER:  Artist’s reconstruction of a cold climate, braided river, such as the Late Glacial Thames (artist Faith Vardy) – via

A simple yet evocative project, Below the Surface is a catalog of objects found when a canal was drained in Amsterdam, creating a longitudinal timeline spanning from modern day to prehistory.  From the site:  “Urban histories can be told in a thousand ways. The archaeological research project of the North/South metro line lends the River Amstel a voice in the historical portrayal of Amsterdam. The Amstel was once the vital artery, the central axis, of the city. Along the banks of the Amstel, at its mouth in the IJ, a small trading port originated about 800 years ago. At Damrak and Rokin in the city centre, archaeologists had a chance to physically access the riverbed, thanks to the excavations for the massive infrastructure project of the North/South metro line between 2003 and 2012.”

The immensity of artifacts found in this hidden hydrology is amazing, and offer a rare chance to look below the surface (as opposed to underwater explorations, which has a range of limitations).  As mentioned:

“Rivers in cities are unlikely archaeological sites. It is not often that a riverbed, let alone one in the middle of a city, is pumped dry and can be systematically examined. The excavations in the Amstel yielded a deluge of finds, some 700,000 in all: a vast array of objects, some broken, some whole, all jumbled together.

The historical context spans a modern timeline going back many centuries, and the evolution of the site were important and provide context for what was found.  For the Rokin site, seen below, the area: “…served as an inland harbour for boats transporting goods and people from the hinterland. Both banks were densely developed with housing, workshops, shops and institutions, among which the Nieuwezijds Chapel (1347). The local urban fabric was constantly changing as major spatial interventions were implemented.”  

The site gives a detailed overview of the project and the archaeological challenges and opportunities, which include two sites, the Rokin and the Amstel. “For purposes of research, there were two intertwining strands: the city and the landscape. These revolved around the origin and history of Amsterdam. Finds from the river, consisting of (the remains of) ceramic, bone or metal man-made objects (artefacts), afford an insight into the material culture of the city. Ultimately, archaeological remains reflect the everyday activities of humans, in this case, of the inhabitants of Amsterdam and its visitors. As such, they are invaluable in the reconstruction of the historical picture of Amsterdam. The value of material remains as sources of urban history lies largely in their connection with the topographical structure of the city. Hence, the vital importance of the link between the deposits and their spatial origin in urban archaeology.”

The concept of streambed archaeology is well documented also, including the process of retrieval is aided somewhat by their submersion, as mentioned: “Another factor that makes streambed sites unique is their tendency to remain intact on account of the inaccessibility of the sunken objects. Once they had fallen in the water it was not easy to get them out. “  There are specific water focused objects, as well as giving clues to what was adjacent to the waterways: “Quite apart from the physical aspect of archaeological material sinking down in water, underwater depositions differ from deposits on land in the diverse origin and generally mixed nature of the finds. They are primarily associated with shipping activities and vary from items that have fallen overboard to complete shipwrecks and parts of ships. Archaeological remains can also be connected with activities ashore. As such, they can often be linked to objects associated with a building or structure, workshop or installation along the bank.”

The visuals of what has been found is provided in a grid, following chronological order, in order to sort from modern to ancient.  The recognizable debris from the modern era, such as credit cards in the 2000s, jewelry and china from the 1650s, pottery from the 1450s, and even fossiles and shells from early prehistory (listed as -119000).  A temporal snapshot of evolution, and an indication that, among their many urban uses, urban water bodies are a repository for our shared archaeological history.

xxx

 

Beyond this, each individual object is cataloged individually, such as this pocket knife.

There’s also a print version, called Stuff, which is available:

The cultural relevance of this detailed exploration hints at an expansive role of waterways in the urban context as containers for memories and, perhaps a time capsule for objects that can trace our lineage over millennia.


HEADER:   Excavation site at Ferdinand Bolstraat station, the cross-section shows the top of the Pleistocene (10,000 B.C.)

The New York Times did a recent story on How the Ice Age Shaped New York with a tagline Long ago, the region lay under an ice sheet thousands of feet thick. It terminated abruptly in what are now the boroughs, leaving the city with a unique landscape.”  This resonated with me and reminded me of posts about Minnesota’s Lake Agassiz, as well as the Waterlines presentation last year by Dr. Stan Chernicoff on Seattle’s own geological history and how the ice age covered the city with a deep layer of ice ground away over time and as it melted 10-20,000 years ago, influenced and left many traces on cities.

New York City experienced similar issues, with a two-mile thick ice layer forming over two million years back, covering the area region encompassing much of the city and all of Manhattan, with the terminal moraine reaching the zone bisecting parts of Staten Island and Long Island, until warming and retreat 18,000 years ago.

The story of many areas is the same, the depth and weight of ice shifting bedrock, and creating waterways, kettle ponds and lakes, as well as retreat leaving glacial erratics and other rubble strewn through the zones.  However it’s more distinct in New York City, as pointed out in the article:  “While the line of glacial debris across the northern United States is often poorly delineated, the hilly ridge around New York City tends to be quite prominent. Its maximum height is roughly 200 feet, about that of a tall apartment building.”

The ridges and hills determined where people settled, as they avoided these areas and found flatter ground, and I remember the specific outcrops left in place in Central Park as features, but perhaps also to avoid having to blast or remove them. (see header image above)  The article mentions that many place names are derived from this rises, appended with Hills, Heights, and Slope and also its usage in local building materials.  The proximity of the terminal moraine to New York City is unique, but that glacial history has been forgotten over time.  As mentioned:

“Despite the ridge’s prominence and early allure for scientists, it turned out to be no rival for skyscrapers and urban distractions. The moraine that shaped the city was all but forgotten. “Clearly, it’s not on the radar,” said David E. Seidemann, a professor of geology at Brooklyn College. “The educational system here doesn’t emphasize earth science. And there’s so much else to do. I’ll go to a Yankees game over geology any day.”

But the hidden remnants paint a fascinating picture, capture by geologist and environmental educator from the American Museum of Natural History, Sidney Horenstein, who also does tours of these phenomena.  He found documents showing that geologists working in the 1800s found in terms of the variation of hill to flatland geology: “Ridges, mountains and even flatlands are typically rooted in rocky strata, such as the bedrock that underlies Manhattan and makes it ideal for erecting skyscrapers. But early investigators found the hilly ridges to be composed of clay, silt, sand, pebbles, cobbles and boulders, all jumbled up together.”

The walk through reports (such as the fascinating Natural History of New York published in 1842) established a chronology of more focused work on things like history of glacial floods, and fills in gaps on geological processes, even showing the emergence of terms to describe processes, like ‘Ice Age’ which was starting to be more widely used in the 1880s.

A 1902 USGS large-format map provided some spatial information as well

The maps used colors to show variations of geology amidst the emerging city grid, and identified the terminal ridge. As the article points out:

“At first, the city used the stony ridge for woodlots and rain catchments. Slowly, the uses expanded to reservoirs, recreational areas and, in time, neighborhoods in which buildings and houses were built on strong footings and foundations for stability.  Today, despite the wide development of the ridge’s lower slopes, a Google Earth view of New York City — a composite of images from April, June and September — shows the glacial relic as an intermittent band of green.”

A larger image of one of the maps  from the folio is seen below, via NYC99 gives an indication of the rich data available – click to enlarge (image source from Texas A&M Library).

Similar to the Missoula Floods that broke through a massive ice dam and carved out the Columbia River basin, New York also had a flood termed ‘biblical’, as glacial retreat happened around 13,000 years ago, where a “... towering wave of destruction crashed down through the Hudson gorge and proceeded to smash the southern end of the local moraine to smithereens.”

It’s interesting to draw parallels between how the glacial impacts are similar on the east and west coasts, but also how they differ due to variations of geology and topography.  The hidden history isn’t just hydrology, but a combination of physical and biological processes working in tandem, over millennia. We’ve done much to erase and obscure, but traces remain, indications of these long and large processes are tucked away under our feet, waiting to attract our gaze.

“…millions of people live on or near the glacial ridge. In all, it runs for roughly 30 miles beneath New York City. Invisibly, it links three boroughs, offering mute testimony to the power of vanished ice.”

 


HEADER:  Umpire Rock in Central Park – this and all other images, unless noted, via NY Times  

There are some that shape Seattle, including Lake Washington to the east (see above header image), a massive 21,500 acres of lake area and a max depth of 214 feet, draining a watershed of over 550 square miles and defines the entire inland edge of the city.  In the medium size category is centrally located Lake Union, (below) which encompasses 580 acres, a max depth of 50 ft, and a similarly larger watershed.  These, along with the Salish Sea to the west, and the Ship Canal and locks, literally form the hourglass shape of the City of Seattle and make up much of the story of the city in terms of water.

Nautical charts aside, we will have plenty more to come on these in terms of history and form, as well as some new efforts that have unlocked some mysteries hidden in their depths.  For now, In addition to these large lakes, there are a number of small lakes that dot the landscape, remnants of the glacial action, namely in the form of kettle ponds. King County has a site for Lakes Data and Descriptions, which includes both, but of particular interest is the page for Small Lakes Data and Info, which allows access to information on these lake, including some simple yet compelling bathymetric maps.   Green Lake falls into the small lake category (and also has been plagued with water quality issues.  The bathymetry shows the current shoreline, which has a lake surface of 259 acres with a contributing watershed (although no contributing streams anymore) of 1875 acres.

For a slightly different visual,this 1938 W.P.A Sanitary Survey map (via the Seattle Municipal Archives page) shows a color coded look “Showing Depth Contours of Green Lake as of 1936”.

Those familiar with the story will know that the shoreline of the lake was changed a bit around the turn of the 20th century, and the addition of the waterfowl named island by said WPA also was not an original, but more on the historic manipulation of the shoreline of Green Lake at a future date.

For now, another interesting resource on the King County Lake site charting of various lake metrics, including water quality.  As I mentioned, water quality issues, mostly in the form of toxic algae growth, have been problematic in Green Lake, with a peak issue in 2013 and a spike in 2016   Some historical data shows the situation in 2016, which shows a spike in Chlorphyll-a, which is an indicator of algae growth, and subsequent nutrient and temperature charts.

The smaller lakes in North Seattle also appear, including the smallest (yet deepest) Haller Lake, which has a surface are of 15 acres, with a max depth of 36 feet.

Bitter Lake has a surface area of 19 acres with a depth up to 31 feet.

 

 

Both are probably similar in size today as they were in the 1800s, based on the historical maps.  The land uses and while the land use has changed, also probably have similar catchment zones.  Maps on the site outline these watersheds, for instance the 331 acre drainage of the lake.  As mentioned on the site: “This map shows the area of the watershed relative to the area of the lake. Generally speaking, the larger a watershed is relative to a lake, the greater the influence land use practices on lake water quality.”

An interesting tidbit on this was discovering the amazing Lakes of Washington by Ernest E. Walcott published in the early 1960s which was the basis for much of the bathymetric info included on the King County site and other resources.  I’ll expand on at a later date, but in that vein, while outside of the city proper, the range of bathymetric maps, so I snipped a few pages out of this document, which includes lakes in King County that are part of the Lake Stewardship Program – just for a flavor of different lake forms in comparison (at least formally, as they do vary in scale) – all of which are derived from the work of Wolcott.

And if you still need your Lake Washington bathymetry fix, one I did find, for the more artistic (or looking for a gift for that special map nerd) are these fun wood fun maps (found amongst other local and national water bodies) sold on Etsy by ‘Beneath the Sail’

 


HEADER: Nautical Chart of Lake Washington

The final installment of books looking at London hidden hydrology is Walking on Water: London’s Hidden Rivers Revealed, by Stephen Myers.  As part of the parade of books on the topic published in 2011, this takes a very different approach than the tour/photo guides of Talling and Bolton, reflecting Myers’ background as an engineer.  If you’ve checked out the previous post on the Barton book, you’ll recognize some of this similar analysis, as the 2016 3rd Edition of ‘The Lost Rivers of London’ includes Myers as a co-author, and seems a hybrid of this book and Barton’s earlier versions.

On that note, Myers approaches the project from that engineering perspective, and its loaded with info.  A blurb from Amazon“London’s hidden – or lost – rivers are a source of fascination. This book concentrates on seven North London rivers – the Fleet, the Walbrook, the Tyburn, the Westbourne, Counter’s Creek, Stamford Brook and the Black Ditch. The author, a professional water engineer, describes their sources and traces their individual histories, setting out their influence on the development of London and their use and abuse by society, eventually leading to their disappearance. The original watercourses of each of the seven rivers are shown on London street maps to a detail never previously attempted. Research to enable this included extensive on-site analysis of their river catchment topographies and desk-top studies of numerous old maps and literary references. Walking on Water ends on an optimistic note. Drawing on his professional experience, the author proposes a practical, affordable and exciting approach to recreating riverside parks and walks in the London boroughs through which the hidden rivers passed, which uses their source waters to refresh the lakes of the Royal Parks.”

Myers breaks down the history of hidden rivers, discusses a good amount on geology and the form of the rivers, and discusses their ‘uses and abuses’, all info covered in other places, but again with a unique focus here.  The second half of the book includes specific rivers, an overall map shows some of the North Bank Rivers (click to enlarge) covered, including all the usual suspects from other books.

Also of interest is a comparative profile, showing the central London Rivers.  The relationship of the rivers in terms of altitude from headwaters to outfall is a complement to plan relationships, and particularly in the context of London where all the rivers flow into the same source, the Thames, it allow for some good comparison.

The development of the City of London is of great interest, named the chapter ‘A City Grows, Its Rivers Beggared’ and how this rapid urbanization impacted the rivers both in demand for fresh water and degradation due to pollution.  The diagram below (which would have aided with some color and texture) shows the expansion of the city, notably the sprawling growth between 1800 and 1900 (marked by the gray inner zone and outer black line).

And while the chapter on ‘Mapping London’s Hidden Rivers’ is helpful in outlining the methodology, the results that come from this work are less than stellar.  All the diagrams and maps here are black and white, using a base map derived from the Geographers A-Z Map Co (similar to Barton & Myers) which again offers legibility and usability issues that leave a lot to be desired.  While the maps in the 2016 book were in color, they seemed overly detailed and took away from the routes of the rivers. In this case, black and white flattens it all out and their small size makes the cramped and difficult to use.  A good hybrid would be a black and white base with the paths drawn in color, perhaps?

As Myers makes a point multiple times, “it was a considerable surprise to learn that there were no large-scale maps, readily accessible to the general public, which showed their routes through the metropolis.” (14)  Perhaps Barton’s original 1962 book insert doesn’t totally qualify as ‘accessible’, but it does, and much more successfully, provide a large scale map of the routes that Myers was missing. He does mention obviously using Barton, and also references a book I had not heard about previously, London Under London by a very appropriately named duo for the task, Trench & Hillman.  Another reference was to a future volume, “Walking on Water – the Hidden Water Walks” to follow this one, but I’ve not found any mention that that project came to fruition.  So perhaps that was going to be the vehicle for better, user friendly maps, that never materialized.

For each river chapter, he does include the sections of the routes, again in very small size, which I think are very helpful for visualizing the routes of streams.

The final chapter does offer a strategy for a project entitled the Hamstead Water Conduit, where he speculates on a proposal that could “recreate short, clean stretches of the Central London rivers – more particularly the Fleet, the Tyburn, the Westbourne, and possibly, the Walbrook, the City of London’s own river.” (200).  He goes on to mention that “the source waters for the Fleet, the Tyburn and the Westbourne rivers are the springs and surface water which drain naturally from Hampstead Health.  These are the only source water of the hidden rivers that have been protected from pollution and which remain eminently accessible today.” (201)

A diagram shows a proposed route, which connects existing daylit portions with new or reconfigured surface channels in places, fed by the springs mentioned above.  While not a continuous river, the result is a linear water course that works with the boundaries of the existing city fabric while taking advantage of opportunities to create surface waters.  A “…‘feel-good’ project” but one with environmental benefits, flood mitigation, recreation, tourism, and infrastructure reduction. As noted by Myers, the social benefits as well, allowing us to “lift spirits in depressing times, but also contribute a small stimulus towards better economic times.” (208)

A more technical diagram shows some of the interconnections between the old and new systems, as well as the make-up water using existing groundwater stores (a metaphorical routing) and creating a water balance that kept water uses constant while using excess flows to ‘restore’ river segments.

 

The strength of this book, as indicated in the above analysis, is a solid, technical background in both the formation of rivers, the geological and hydrological framework in which these waterways emerged, the development implications that drove them underground, and some realistic considerations on why it would be difficult to daylight them, as they have been so fully consumed into the existing sewer systems. But also, some defensible and plausible daylighting strategies that take these multitude of factors into play.

The glossary ‘Watery Definitions’ on page 20 is a good touch, and discussion of what is a creek, stream, river, etc. is one that few tend to delve into in any detail.  As he mentions, due to size and typology, “it might seem more approrpriate to make reference to London’s ‘Hidden Streams’ rather than to London’s hidden rivers, as the flows in them could not really be described as ‘copious’ and their water surface widths generally lay in the narrow band of between 2 and 6 metres.  However, these watercourses have been referred to historically and collectively as ‘rivers’, and so this book will perpetuate that possibly inaccurate usage.” (22)

The Disclaimer at the beginning was interesting as well, as it seemed appropriate for anyone with a background in design and engineering to include the cover-your-ass language about accuracy, liability and not using the information for specific purposes.  This shows up also in the later Barton & Myers version of Lost Rivers, but does bring up a point about representation and what it could mean.  The accuracy of old maps .  He also warns about sewer exploration, I guess as well a necessary caveat for disseminating this type of information.

Each book I’ve covered offers something unique to the conversation, and this provides a great resource for those interested in London, but also a wider context of the emergence of urban creeks and rivers which seem applicable to all places.  A level of technical rigor also makes this a valuable companion to other resources that focus on places, history, landmarks and culture.

 

 

My previous postscript ran somewhat longer than anticipated, due to the massive amount of work happening in and around New York City.  Thus a focus on this post on the cartographic, including some of the great resources available, and the rich history of maps new and old that emerge to tell a visual story of hidden hydrology in the city and larger region.  There are so many, that one who wants to dive in can jump down to the resources section below to see lots of great sites showcasing the maps, my focus here is to highlight a few I thought were interesting and beyond general map nerdiness, some that had a particular relevance to hidden hydrology.

An old version dates back to the early settlement times, from 1639 the Manatvs gelegen op de Noot [sic] Riuier (via Library of Congress) is a fun introduction to the area, north to the right showing the section of Manhattan (Manatvs) and areas surrounding.  Fun to see a map from this far back, and it does represent some of the topography and hydrology in some rudimentary ways.

The 1660 Castello Plan (original and a later reproduction drawn in the early 1900s) offers a glimpse of the tip of Manhattan, or New Amsterdam.

Many maps come via The Iconography of Manhattan Island, via Wikipedia “a six volume study of the history of New York City by Isaac Newton Phelps Stokes, published between 1915 and 1928 by R. H. Dodd in New York. The work comprehensively records and documents key events of the city’s chronology from the 16th to the early 20th centuries. Among other things, it shows the evolution of the Manhattan skyline up to the time of publication”  More: “Stokes’s worldwide research teams scoured public and private collections of maps, guides and obscure source material to complete his encyclopedic monument to New York City. It describes in detail the growth of a fortified Dutch settlement into a major city, and ultimately included six volumes sold to subscribers and libraries in a limited edition of 360 sets printed on Holland-made paper and 42 on Japanese vellum.”

The following plate from this Iconography is from 1693, showing Manhattan and the shift from New Amsterdam to Nouvelle Yorc:

The Bradford Map is another resource, showing “…the city of New York at the time of the granting of the Montgomery charter …” and “from an actual survey” and starting to highlight some hydrological resources like the Collect Pond.  The map is a reproduction from the 1800s, but shows the area in 1730 and is similar to the later Maerschalck map, showing similar area in the 1750s.

A beautiful map is a 1777 version Plan de New-York et des Environs, showing a similar zone with a lot more detail, a precursor of some of the more detailed maps (and sophistication of mapmaking) in the late 18th century.

A larger area comes via 1766-1777 and the Plan of the city of New York in North America – surveyed in the years 1766 & 1767 by Ratzer, showing a larger zone beyond the Hudson and East Rivers.

From the header above we see the influential British Headquarters map that was used heavily in the creation of the Welikia project.  This map shows the larger area of Manhattan in fine detail, with topographic relief – a zoomed in section shows why this was such an important historical document.

Fast forwarding a bit to the early 1820s, the Randel Map was an atlas of.  Via The Greatest Grid website: “Between 1818 and 1820, John Randel, Jr. prepared an atlas of 92 watercolor maps that vividly illustrates the properties, old roads, and major features of pre-grid Manhattan as well as the future location of the new streets and avenues of the 1811 grid.  Drawn at a scale of 100 feet to 1 inch, the Randel Farm Maps provide a detailed picture of Manhattan before its transformation. Hand drawn and colored, they are among the most significant documents in the history of New York as well as a rarity in American urban history, as no comparable maps exist for other early-19th-century American cities”.   There are 92 individual maps, but an online map stitches them together in a beautifully detailed composite here.

The maps got more broad, with titles to fit like “Topographical map of the city and county of New-York, and the adjacent country : with views in the border of the principal buildings, and interesting scenery of the island.” from 1836 showing the entire island of Manhattan with relief,

This was perhaps the precursor to one of the most fantastic maps, that created by Egbert L. Viele, the 1865 gem “Sanitary & Topographical Map of the City and Island of New York.

The detail is amazing, and it’s available as a high-res download at multiple sources, including Wikipedia which describes it as such: “…survey of the original streams, marshes and coastline of New York City, superimposed over the street grid. The map is still used by modern geotechnical engineers, structural engineers and planners to design the foundations of new buildings and structures in the city.”  A few close ups illustrate this point, and allow for georeferencing to the modern city:

A few other maps that caught my eye, specific to Hidden Hydrology Broadside of the Collect Pond, New York and Steam Boat (Five Points) highlights that the pond was still there in 1846 (or at least as represented here from 1793).

And the birdseye perspectives are another great resource, showing a different viewpoint.  As a tool to communicate place, I’ve always been fascinated by these, such as this 1870 version from Currier & Ives (source unknown as I got this via Twitter) but I believe it’s from Library of Congress.

And some map-objects and infrastructure systems that are fascinating, including this one, a ” Sketch showing the ground under carriageway at intersection of Wall, Broad, and Nassau Streets : as occupied by water, gas, steam, pneumatic, cable and electric pipes, sewers, basins, culverts and vaults to houses, etc., February 1885″  

 

There’s also a wealth of maps covering many Boroughs, but these map be for another time – and the resources below offer lots of chances for locals or the curious to dive in to more depth.

INTERACTIVE MAPS

There’s great interactive maps like  the interactive to quirky side, there’s a fun historical Spyglass Map, showing the New York City of 1836 vs. today,   The Smithsonian, had David Rumsey provide some discussion of this map to go along with an article about it, where: “Rumsey looks to the map’s delicate shading to tell much of its story, noting that the heavily shaded areas represent the most densely populated portions of the city at the time of the ma’s drawing. “Pretty much everything past 14th St. is country,” he explains, adding that much of what is considered Manhattan today wasn’t yet settled. In addition to the population shading, the hills of Manhattan are shown by hachures, an antiquated method of showing relief on drawn maps. “A lot of the history of Manhattan is the destruction of its hills,” Rumsey says. “Basically that topography was obliterated, except for Central Park.”

And a fun but perhaps limited in usefulness ‘Urban Scratchoff’, which does a similar thing with by revealing a 1924 map underlay.  I feel as if I keep scratching but never really win anything.

MAP RESOURCES

A great site focused on Manhattan that filled in much of the above content is the map page of Manhattan Past which is connected to the site and book ‘Street Names Past & Present’ focused on the place name origins of area around the City.  The maps are broken down chronologically back into the 1600s, with links to originals and some brief text, a great primer for delving into the larger pool.

Additionally, The Greatest Grid is a site that emerged from the exhibition The Greatest Grid: The Master Plan of Manhattan 1811-2011, at Museum of the City of New York in 2011 to 2012, which “documents the creation of Manhattan’s signature grid, which set a remarkably flexible framework for growth as a town of 100,000 in 1811 became today’s world city of 1.8 million people (in Manhattan only). Balancing order and freedom, uniformity and individuality, the grid continues to serve as a model of urban planning in the 21st century.”  Some great background on the development of the city and the grid, as well as great maps, are found within.

The resources available are amazing, drawing on local and international institutions – one of the best being the Open Access maps from the New York Public Library, where the The Lionel Pincus & Princess Firyal Map Division has over 20,000 free, high resolution downloads available, many of the maps above coming from this source, and their active Twitter feed @NYPLMaps showcases many more.

Plan of the town of Brooklyn and part of Long Island – 1767 (NYPL)

Another I thought was very comprehensive and well organized was via Stony Brook University called NYS Map Pathfinder.  Larger institutions carry plenty of maps of New York City due to it’s significant, as The Library of Congress has extensive holdings for New York City, and as most map nerds know, the David Rumsey collection is the go to for maps, including lots for New York, with some great tools, as well for viewing and sorting.  Just sifting through you find the historic, but a wealth of interesting map techniques, such as this Map of Greenwich Village made for the Whitney Studio Club from 1920.

And speaking of other non-historic maps, not specific to hidden hydrology, I’d be remiss without mentioning the New York version of Rebecca Solnit’s atlas collection Nonstop Metropolis, A New York City Atlas, authored with Joshua Jelly-Schapiro and true to form with the other regional versions from San Francisco and New Orleansis part of the compendium of maps as storytelling devices.  Read this great long essay via Public Books entitled Visible Cities by Laura Yoder for where she dives into “maps that catalogue social and cultural complexity, and teach us to engage with difference in productive and generous ways.”  Another good review via Hyperallergic, “Creating an Atlas of Overlooked Cartography for New York City” where they relate that “Every map is an intense act of creative collaboration, with essays and illustrations in Nonstop Metropolis from over 30 artists and writers.”  The image below is indicative of this style, showcasing “Wildlife”

A book that looks interesting by Marguerite Holloway is the author of The Measure of Manhattan: The Tumultuous Career and Surprising Legacy of John Randel, Jr., Cartographer, Surveyor, Inventor, and another on the maps, there’s the 2014 publication Manhattan in Maps 1527-2014 by Paul E. Cohen &‎ Robert T. Augustyn 

For modern mapmakers, there’s a rich collection of resources, including NYCityMap and OASIS both displaying tons of thematic info on current conditions in the city, the latter even providing a historical slider showing the Mannahatta layering.

I could post maps and larger stories of hidden hydrology every day for a year and not run out of interesting tidbits here in the Big Apple, which reflects the richness of historical context and also the passion for many people to investigate their hidden hydrological histories.  And it seems a fitting segue to where we are heading.  Next up, we head over the pond to the undisputed champion of Lost Rivers – London.

Stay tuned.

 


HEADER:  Facsimile of the unpublished 1782 British head quarters coloured manuscript map of New York & environs – via David Rumsey

As I mentioned, New York City and the larger metropolitan region is an important case study in hidden hydrology, with a range of interesting activities spanning urban ecology, history, open space, art, subterranean exploration, and much more.  As a city with a long and vibrant history it’s not surprising that the story of water would be equally compelling.  The following few posts will expand on some of the key activities that shape the hidden hydrology of the city.

Times Square then and now: the area featured a red-maple swamp frequented by beavers, wood ducks, and elk. – via the New Yorker

Almost a decade or so ago, I read this story in the New Yorker about Henry Hudson, the year 1609, a map, and an effort by a group of people, including ecologist Eric Sanderson, to research and visualize the historical ecology of New York City. I posted this  and posted it to my blog Landscape+Urbanism.  This was one of the catalysts, and I’ve discussed this project in the past as one the key Origin Stories around my personal interest in Hidden Hydrology.

Mannahatta Map – via NYC 99 ORG

The publication of the ideas with the publication of the Mannahatta book (originally out in 2009 and with new printing in 2013) and this broader work by Eric Sanderson (and his very well loved TED Talk) and crew on visualizing and creating rich data landscapes for Manhattan and the larger region is constantly compelling, and the shift to a broader scope under the name The Welikia Project in 2010 was really exciting to see.

The Welikia Project expands the  provides a rich and well documented study of the historical and ecological study of New York City dating back over 400 years and inclusive of a range of interpretation from art, ecology, and design.  The overview of Welikia here provides a much longer and more complete synopsis of the project, but I’ll pick some of the interesting ideas I think are worth of discussion in information larger ideas about hidden hydrology.

The main page offers a range of options that the project provides.  Per the overview page, “The Welikia Project (2010 – 2013) goes beyond Mannahatta to encompass the entire city, discover its original ecology and compare it what we have today…  The Welikia Project embraces the Bronx, Queens, Brooklyn, Staten Island and the waters in-between, while still serving up all we have learned about Mannahatta.  Welikia provides the basis for all the people of New York to appreciate, conserve and re-invigorate the natural heritage of their city not matter which borough they live in.”

Tools include some downloads include curriculum for teachers to use, and some publications and data also available which would be fun to explore more.  A few notable bits of info worth exploration is this page “How to Build a Forgotten Landscape from the Ground Up”, which is a nice overview of the methodology used by the Welikia team, and provides a nice blueprint for organization of data that is transferable to any locale.

The original historical 1782 British Headquarters map was the genesis of any number of overlays that, once digitized into GIS, provided a historic base to layer additional information from other sources, along with inferences by professional ecologists and other members of the team.  These were also able to be georeferenced, which allows for the overlay of historic to modern geography, which becomes the basis for some of the larger interactive mapping we’ll see a bit later.  A map series from the Welikia site demonstrates the layering and aggregation possible.

1782 British Headquarters Map
Elevation differences from 1609 to today
Digital Elevation Model
Ecological communities

The concept of Muir Webs was also a fascinating part of the original Mannahatta book, so you can learn more about this on the page and via this presentation “On Muir Webs and Mannahatta: Ecological Networks in the Service of New York City’s Historical Ecology”

This Muir Web shows all the habitat relationships for all the species on Mannahatta. Visualization by Chris Harrison of Carnegie-Mellon University. ©WCS

Welikia Map Explorer – Lots of interesting background that I’ve literally barely scratched the surface of.  As I mentioned, the beauty of Mannahatta was the visualization of the historic surface, and through mapping with georeferenced location, provided an easy opportunity to create overlay maps of historic and modern.  The key part of this project is the Welikia Map Explorer, which offers a simple interface that can unlock tons of information.  Starting out, you have a full panned out view of the 1609 map visualization for Manhattan.

By selecting an address or zooming, you can isolate locations or just navigate.  It’s got that same video game quality I mentioned in my recent post about the DC Water Atlas, with some exploratory zooming and flying around the landscape looking at the creeks, wetlands and other area, you half expect to click and launch some next part of a non-linear exploration game.   The detail is amazing, and the juxtaposition between the very urban metropolis of New York City with this lush, pre-development landscape is striking both in plan, as well as some of the 3D renderings above.

You can then select any block and it will pop up a box that allows you to access lots of data underneath on a smaller level.

The interface provides layers of site specific data, and breaks down items like Wildlife, potential presence of Lenape (original native inhabitants, and Landscape Metrics. “Welcome to a wild place: this block in 1609! Through the tabs below, discover the wildlife, Native American use, and landscape factors of this block’s original ecology, as reconstructed by the Mannahatta Project. You can also explore the block today and sponsor the Mannahatta Project into the future.”

The Modern Day tab relates back to OASIS maps of the modern condition, making the connection of specific places easy to discern. “Landscapes never disappear, they just change. Click on the image below to see this block today through the New York City Open Accessible Space Information System (OASIS) and learn about open space and other contemporary environmental resources.”

For the beautiful simplicity of the map, it’s easy to lose sight of the fact that this is dense with real data and models that attempt to provide a real viewpoint to what each parcel was like 400+ years in the past.  We discuss baseline conditions much in design, stormwater, ecology and habitat studies, and this level of evidence-based, site scale data is so important to decisonmaking not just in terms of former waterways, but in restoration and management of spaces.  This is summed up on the site:

“An important part of the Mannahatta Project is not leaving ecology in the past, but to appreciate it in our current times, to see how we can live in ways that are compatible with wildlife and wild places and that will sustain people and planet Earth for the next 400 years.”

Visonmaker.NYC – Of the more recent expansions of this is the creation of Visionmaker NYC, which “allows the public to develop and share climate-resilient and sustainable designs for Manhattan based on rapid model estimates of the water cycle, carbon cycle, biodiversity and population. Users can vary the ecosystems, lifestyles, and climate of the city in an effort to find and publish sustainable and resilient visions of the city of the future.”

Worthy of a full post on it’s own, the idea is to emphasize the link between the Mannahatta era of 1609, the current era four centuries later, around 2009, and a future world into the future another 400 years in 2049.  This gives a great opportunity to create a key linkages between historical work, current scenarios, and future conditions.

As they mention: “A vision is a representation of a part of New York City as you envison it. You select an area and can change the ecosystems – buildings, streets, and natural environments – as well as the climate and the lifestyle choices that people living in that area make.” and you can also view other published visions done by users of all ages.  The interface is similar to Welikia, as it allows an overlay of layers with varying transparency for comparison.

More on this as I dive in a bit, but you can also watch a more recent 2013 TEDxLongIslandCity video shows this tool in more detail:

The mapmaking is of course pretty awesome, and they keep posting new visualizations and updates, such as this 1609 topo map, posted via Twitter via @welikiaproject on the “Preurban (year 1609) topography and elevation of

There was also some great local quirky info, such as this map and historic photo showing perhaps the strangest remnant geological remnant in a city I’ve seen.  Via Twitter from December 2016, “29 Dec 2016  “Rocky outcrops in NYC, were mostly concentrated in Manhattan and the Bronx and composed of schist and gneiss.”

You can and should also follow Sanderson via @ewsanderson , continuing his work at the Wildlife Conservation Society and to see him giving talks and tours around the City.  A recent one mentioned that “After seven years of effort, he will share for the first time the digital elevation model of the pre-development topography his team has built, discuss why the climate and geology of the city together make our landscape conducive to streams and springs, give a borough by borough tour of ancient watersheds, and suggest how we can bring living water back to the stony city again.” 

Sounds great, and I wish sometimes to be a bit closer to be able to experience this around these parts.  Continuing to inspire beyond Mannahatta to the broader Welikia Project, Sanderson and all the crew that make it a reality is a great example anywhere in the world of what’s possible in tracing the threads between history and contemporary environmental issues.  If someone today gave me a chunk of money and said do this for Portland or Seattle or both (and honestly folks, we really should) I’d jump on it in a second.

The history of hidden hydrology isn’t just that of erasure, but of ‘made land’, significant areas that were added to cities through the process of landfilling. A June, 2017 post from National Geographic’s All Over the Map blog captures this on the east coast, telling the story of “How Boston Made Itself Bigger” illustrated with some fantastic maps.  The focal map shows the extent of landfilling throughout the span from 1630 to present, from the original shape of the downtown area (Shawmut Pennisula), and the modern shoreline in blue.  The massive extent of fill is pretty evident with significant percentage of the metro area on land that at one point in the not-so-distant past was water.

Much of Boston’s coastline is man-made land. The original shoreline, from 1630, is visible in dark green on this map. Land made between 1630 and 1995 is light green. PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY; CARTOGRAPHY BY HERB HEIDT AND ELIZA MCCLENNEN, MAPWORKS

A 1630’s map shows the Shawmut, and the narrow spit of land that connected this (for a time at least) to the mainland (rotated north to the right).

PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY

The impetus for the post on Boston was driven by lowering of the water table to levels that started to potentially reveal many of the wood piles, which stay preserved in anerobic conditions – as similar situation to a water-based city like Venice, for instance, but once water levels reveal them, makes them highly susceptible to rot.  From All Over the Map:

” A large portion of the city sits on man-made land. Structures built on the landfill are supported by dozens of 30- to 40-foot-long wood pilings, similar to telephone poles, that reach down through the landfill to a harder layer of clay. These pilings sit entirely below the water table, which protects them from microbes that would attack them in dry air, causing rot.”

The filling also was facilitated by damming, such as seen below, where what was the current Back Bay “neighborhood is marked “Receiving Basin” on this map. Boston Common is the uncolored area marked “Common.”  By damming the areas, thus separating them from the larger bodies of water and tidal changes, it was easier to then start to develop and fill in with railroads, industrial lands and more development.  The image shows expansion parcels, notably widening of the neck and further encroachment into the water.

PHOTOGRAPH COURTESY OF THE NORMAN B. LEVENTHAL MAP CENTER, BOSTON PUBLIC LIBRARY

As mentioned, it wasn’t just increased development area that was driving the land filling:  “Over the years there were many other motivations for making new land, including making harbor improvements, burying pollution from wastewater, safeguarding public health, building public parks, adding railroad tracks and depots, adding more shipping facilities to compete with other port cities, establishing appealing neighborhoods to entice Yankees to stay (and to counter Irish immigration), and creating space for the city’s airport.”  Another driver was public health, including filling in ponds and creeks, which were starting to smell.  Concurrent with filling (and a great source of fill) was removal of hillsides, another common city strategy, which provided plenty of earth to create more land while levelling, in this case, Beacon Hill. (via Wikipedia)

Cutting down Beacon Hill in 1811; a view from the north toward the Massachusetts State House

The Back Bay was a source of both significant filling due to its location as a locus of sewage (and a super complicated hydrological regime change that was involved), as mentioned in All Over the Map“…an 1849 report from a city committee that reads: “Back Bay at this hour is nothing less than a great cesspool into which is daily deposited all the filth of a large and constantly increasing population … A greenish scum, many yards wide, stretches along the shores of the Western Avenue [Mill Dam], whilst the surface of the water beyond is seen bubbling like a cauldron with the noxious gases that are exploding from the corrupting mass below.”  The area was filled with trash and other debris, as fill material was less available, along with being set on the aforementioned pilings, placing it in the awkward position of being even now “one of the city’s most desirable neighborhoods, but also among the most vulnerable to foundation rot.”

I’d be remiss as well if I didn’t mention, in the context of this, one of my favorite Olmsted projects, the Back Bay Fens, which came at the tail end of the filling, in the 1870s (via Wikipedia):  “Olmsted’s challenge was to restore the spot of marsh which was preserved into an ecologically healthy place that could also be enjoyed as a recreation area. Combining his renowned landscaping talents with state-of-the-art sanitary engineering, he turned a foul-smelling tidal creek and swamp into “scenery of a winding, brackish creek, within wooded banks; gaining interest from the meandering course of the water.”

The extent of land filling is hard to visualize, but the map that shows it most clearly in terms of downtown is a simple overlay of the original Shawmut Pennisula over the new shoreline (you can see the tip of the Back Bay Fens in the lower left hand corner).

Via Written in Stone…

And while not the most up-to-date map in terms of graphic style, a good way to illustrate the evolution of landfilling over time that is hard to capture on maps is this animation via the Boston: History of the Landfills page at Boston College.   Someone has probably updated this, so if you know of it, let me know any updated sources.

A later map in 1867 from the NOAA US Coast Survey below shows further expansions closer to the modern coast.  Although the land and coast changed less in the ensuing century and a half, the continuing legacy of the land filling continues to be costly to maintain, exacerbated especially in times of changing water levels that we are experiencing with global climate change.

The hydrology as well, although hidden, is evident in repairs for pilings and other issues of groundwater – a symptom of building and ‘making land’ on areas formally water. And as concluded in All Over the Map, “…with more than 5,000 acres of man-made land—more than any other American city (except perhaps San Francisco, where the landfill hasn’t been comprehensively totaled)—Bostonians will be living with this problem for the foreseeable future.”

ADDENDA

Plenty of folks have covered this in Boston and the idea of land filling, with a variety of maps and imagery, such a Boston Geology, and some more context on the pilings from the Boston Groundwater Trust.  Also, this great post from the Library of Congress ‘Putting Boston on the Map: Land Reclamation and the Growth of a City’ features a few maps, including one of the earliest maps, which highlights the former tight pennisula.

William Burgis and Thomas Johnston. “To his excellency William Burnet, esqr., this plan of Boston in New England is humbly dedicated by his excellencys most obedient and humble servant Will Burgiss.” 1728. Geography & Map Division, Library of Congress.

And a fabulous birdseye from the late 1800’s showing more significant filling.

Charles R. Parsons and Lyman W. Atwater. “The city of Boston.” 1873. Geography & Map Division, Library of Congress.

See the some of the timeline of history via the USGS series of maps of Boston here, or a more interactive map via MapJunction with an array of base and historical map overlays of Boston, including a cool 4-way slider that allows you to do an overlay left-to-right and control transparency top-to-bottom.  A couple of screen shots of these.

1776 Hybrid Map (Boston and Environs – Pelham)
1917 Hybrid Map (Boston Bromley Atlas)

And an out-of-print book worth tracking down is Nancy S. Seasholes Gaining Ground: A History of Landmaking in Boston (MIT Press, 2003) where the “story of landmaking in Boston is presented geographically; each chapter traces landmaking in a different part of the city from its first permanent settlement to the present.” 

Many cities share this trait, using fill to gain area, which has been both boon and boondoggle.  Locally, a great resource worthy of a deep dive is Too High and Too Steep: Reshaping Seattle’s Topography by David B. Williams (University of Washington press, 2015), which I’ve read and re-read which explores in detail, a similar massive manipulation and use of made land here in my current particular West coast City.

HEADER:  Image via National Geographic, “A map of Boston in 1775 shows the dam that closed off Mill Pond, which was later filled in to make new land. “  PHOTOGRAPH COURTESY OF LIBRARY OF CONGRESS

 

Having gone to undergraduate school at North Dakota State University in Fargo in the mid-1990s, one became aware of a distinct transitional zone as you headed east towards the Twin Cities.  A short drive across the Minnesota border, you could see what was the shoreline traces that marked a clear shift of geology and with some study, begin to piece together the story of the past millenia, involving a glacier, a lake, and the reason the Red River flows to the north.

A recent Ghosts of Minnesota post “A Minnesota beach where there is no water”  by Troy Larson, reminded me of this place and the influence the immense glacial Lake Agassiz on the landscape of the upper sections of the Plains, a lake formed at the end of the last ice age, some 8,000 to 14,000 years ago.

A map of the territory by Warren Upham, from the earth 19th Century shows the extent of the Lake, and as mentioned by Larson, “Today, Lake Agassiz is believed to have been even larger than what is represented on this map.”

Larson gives some context:

“Lake Agassiz was a massive body of fresh water in the middle of North America, larger than all of the Great Lakes combined. As the ice sheet retreated, ice dams held back the meltwater to create glacial Lake Agassiz. As the lake drained, sometimes slowly, other times in sudden, catastrophic outflows, the lake shrank and changed, leaving behind a table-flat landscape with some of the richest farmland in the world, and even sandy beaches from it’s ever-shifting shoreline. To the geologically educated, the signs of Lake Agassiz are everywhere, but even to those like myself, without a geologic eye, there are places where you can see the remains of this monster lake.”

A close up shows the area around the North Dakota-Minnesota border, bisected by the Red River (of the North).

The post covers some photos of the area near Fertile, Minnesota, home of the Sandhill Recreation Area and nearby Agassiz Dunes Natural Area, and as explained in the Ghosts of Minnesota post by Larson: “These dunes were formed as the ice sheet retreated and the weather became dry and hot. In wetter times, foliage appears and covers the dunes, and in dry periods, the growth retreats and the sand becomes more visible.”  With places like a dune called “Death Valley” named due to the instability of the shifting sands, this is an atypical plains landscape.

image – Ghosts of Minnesota

image – Ghosts of Minnesota

While there are plenty of lakes in Minnesota (yes, well over 10,000) the sort of expansive lake left traces of a more significant water body, as mentioned by Larson:

“The sand feels just like beach sand. It’s a soft, fine grain sand that shifts beneath your feet when you walk on it.” 

image – Ghosts of Minnesota

A more expansive map from a recent CBC article that covered a new book by Bill Redekop (@billredekop) entitled “Lake Agassiz: The Rise and Demise of the World’s Greatest Lake” exploring the hidden mystery of the lake.  “For millennia, the evidence of its existence remained hidden in plain sight, but slowly details of the landscape began to merge in the minds of people passing through the province.” The modern map (via the CBC article) shows a more expansive Lake Agassiz, and the extent:

As Redekop explains, the investigation of the hidden connects the modern to the historical.  He summarized the feeling after writing the book:

“”Now I have two landscapes: the one that I see and the one that I imagine, that I know was there 10,000 years ago.”

The deep time of geology, as mentioned here in the post on Seattle area, leaves many traces and clues to .  Beaches without lakes, valleys without creeks, all connect us to a historical past that shapes our present and future.

Header image of Lake Agassiz dunes – via Ghosts of Minnesota

I posted some amazing images last year of changing course of the Willamette River captured with LIDAR, evoking wisps of smoke leaving a palimpsest of tracings across the landscape.  A recent article from National Geographic’s site ‘All Over the Map‘ entitled ‘See the Strange, Beautiful Landscapes Revealed by Lasers‘ reminded me of the beauty of this digital technique, showcasing some additional regional imagery and including hydrology and geology, this time focused in the State of Washington.  A few of the images included:

The Quinault River on Washington’s Olympic Peninsula has meandered extensively in the past, leaving behind dry, abandoned stream channels filled with river sediment that are revealed by LIDAR.
Channels in northwestern Washington formed when melting glaciers caused major floods. The channels are highlighted near the center of this LIDAR image.

The images are beautiful and intriguing, owing to the ability of LIDAR to penetrate vegetation layers to reach surface levels often unseen with traditional methods.  The beautiful imagery in the article is from the Washington Geological Survey site ‘The Bare Earth’ which is a descriptive resource on “How lidar in Washington State exposes geology and natural hazards”.

While useful for many types of analysis, this is particularly important to identification of landscape hazards, which had devastating impacts in 2014 in Oso, a town north of Seattle, and you can see some of the images highlighting landslide activity in the region.

A landslide covered with vegetation near Deming, Washington is revealed with LIDAR.
Old landslide scars on the Cedar River near Seattle are normally obscured by forest, but are plainly visible in this LIDAR image.

The most intriguing image to me was the Mima Mound Natural Area Preserve, which I hadn’t known about before reading this, which look much like a magnification of dermis instead of earth.

The mysterious Mima Mounds near Olympia, Washington are beautifully exposed in this LIDAR image. The origin of these mounds, which are 6 feet tall and 30 feet wide on average, is unclear and has been attributed to gophers, insects, wind, earthquakes, and the shrinking and swelling of clays.

The landscape itself is subtly rolling like an earthworks art project, and the reasons for their form is up for debate, as seen in the caption above.  The landscape itself is subtle and beautiful, definitely motivated to take a trip down to Olympia.

The pages on the great context on how LIDAR works with a story map of some visuals along with descriptive illustrations.  Per the WGS site,

“Lidar (light detection and ranging) is a technology that uses light pulses to collect three-dimensional information. Lidar data is often collected from an airplane using a laser system pointed at the ground. The system measures the amount of time it takes for the laser light pulses to reach the ground and return. Billions of these rapidly-collected measurements (points) can create extremely detailed three-dimensional models of the Earth’s surface. See the diagram below to better understand how airborne lidar is collected.”

A breakdown of the different maps that be extracted from the process.

The beauty of LIDAR is the ability to give an alternative view that is impossible to capture in other ways, particularly in deeply vegetated sites, with lots of coniferous vegetation. Again, from The Bare Earth site: “In geology, lidar bare-earth models allow closer study of geomorphology, which is the study of the origin of the topography of the earth. Landslides, faults, floods, glaciers, and erosion leave their mark on the landscape, and while these marks can be hidden by dense vegetation, they can’t hide from lidar.”

Harkening back to the previous posts of the geology of Seattle, the glacial retreat was a major factor in the Seattle-area geology and current hydrology.  The image below shows an aerial image, which reveals little of this feature, but the Lidar image shows the directional scarring and drumlin deposition around Hood Canal in sharp relief.

LIDAR shows the landscape around Hood Canal, a fjord in the Puget Sound, which is filled with elongated, rounded hills known as drumlins that were left behind by glaciers.

A video as well elaborates on the technique:

Check out more of Betsy Mason and Greg Miller at All Over the Map and follow them on Twitter @mapdragons

Header image, like many of the other images in the post, is from Washington Geological Survey, via National Geographic,.  The header shows “The floodplain and dry, former channels of the Chehalis River in western Washington State are revealed by this LIDAR-based elevation map.”